Optimizing Graph Neural Network-Based Recommender Systems with PyTorch Geometric
Objective
Develop a graph-based recommender system using PyTorch Geometric (PyG), focusing specifically on hyperparameter optimization and model optimization techniques to improve recommendation accuracy. This project aims to provide hands-on experience in building and fine-tuning GNN models for recommender systems, emphasizing the practical aspects of model performance enhancement using PyG.
Learning Outcomes
By completing this project, you will:
- Gain in-depth knowledge of PyTorch Geometric for building GNNs.
- Understand how to optimize GNN models through hyperparameter tuning and architectural adjustments.
- Learn to implement advanced hyperparameter optimization techniques using tools like Optuna.
- Acquire skills in model evaluation and performance analysis specific to GNN-based recommender systems.
- Develop expertise in handling graph data preprocessing and feature engineering tailored for recommendation tasks.
Prerequisites and Theoretical Foundations
1. Python Programming (Intermediate Level)
- Data Structures: Lists, dictionaries, sets, and tuples.
- Control Flow: Loops, conditionals, and functions.
- Object-Oriented Programming: Classes and inheritance.
- Libraries: Familiarity with PyTorch and Pandas.
2. Basic Understanding of Graph Neural Networks
- Graph Theory:
- Concepts: Nodes, edges, adjacency matrices.
- Neural Networks:
- Fundamentals: Layers, activation functions, loss functions.
- Training process: Forward pass, backward pass, optimization.
3. Basic Understanding of Recommender Systems
- Collaborative Filtering:
- User-item interaction matrix.
- Graph-Based Approaches:
- Representing recommender systems as graphs.
Tools Required
- Programming Language: Python 3.7+
- Libraries and Frameworks:
- PyTorch:
pip install torch
- PyTorch Geometric (PyG): Follow official installation guide
- Pandas:
pip install pandas
- Optuna:
pip install optuna
- Scikit-learn:
pip install scikit-learn
- Matplotlib:
pip install matplotlib
- PyTorch:
- Dataset:
- MovieLens dataset (Preferably the 100K variant for manageability)
Project Structure
gnn_recommender_system/
โ
โโโ data/
โ โโโ movielens/
โ โโโ ratings.csv
โ โโโ movies.csv
โ
โโโ src/
โ โโโ data_preprocessing.py
โ โโโ graph_construction.py
โ โโโ model.py
โ โโโ train.py
โ โโโ evaluate.py
โ โโโ hyperparameter_optimization.py
โ โโโ utils.py
โ
โโโ notebooks/
โโโ data_exploration.ipynb
โโโ model_training.ipynb
โโโ hyperparameter_optimization.ipynb
Steps and Tasks
1. Data Acquisition and Exploration
Tasks:
- Download the MovieLens 100K Dataset:
- Use the official MovieLens website.
- Load Data into Pandas DataFrames:
ratings.csv
andmovies.csv
.
- Perform Exploratory Data Analysis (EDA):
- Understand the distribution of ratings.
- Analyze user and item interactions.
- Check for missing values or inconsistencies.
Implementation:
import pandas as pd
import matplotlib.pyplot as plt
# Load data
ratings = pd.read_csv('data/movielens/ratings.csv')
movies = pd.read_csv('data/movielens/movies.csv')
# EDA
print(ratings.head())
print(movies.head())
# Rating distribution
plt.hist(ratings['rating'], bins=5)
plt.xlabel('Rating')
plt.ylabel('Count')
plt.title('Rating Distribution')
plt.show()
2. Data Preprocessing and Graph Construction
Tasks:
- Preprocess Data:
- Encode user IDs and movie IDs to indices.
- Normalize ratings if necessary.
- Construct Graph Data Structure for PyG:
- Nodes: Users and movies.
- Edges: Interactions (ratings) between users and movies.
- Create Node and Edge Features:
- Node features: Could be embeddings or one-hot encodings.
- Edge features: Ratings or binary indicators of interaction.
Implementation:
import torch
from torch_geometric.data import Data
from sklearn.preprocessing import LabelEncoder
# Encode user IDs and movie IDs
user_encoder = LabelEncoder()
movie_encoder = LabelEncoder()
ratings['user_idx'] = user_encoder.fit_transform(ratings['userId'])
ratings['movie_idx'] = movie_encoder.fit_transform(ratings['movieId'])
# Prepare edge index
edge_index = torch.tensor([
ratings['user_idx'].values,
ratings['movie_idx'].values + ratings['user_idx'].nunique()
], dtype=torch.long)
# Prepare edge attributes (ratings)
edge_attr = torch.tensor(ratings['rating'].values, dtype=torch.float)
# Create node features (optional: use zeros if not available)
num_users = ratings['user_idx'].nunique()
num_movies = ratings['movie_idx'].nunique()
num_nodes = num_users + num_movies
x = torch.zeros((num_nodes, 1)) # Assuming no node features
# Create data object
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
3. Splitting the Data
Tasks:
- Create Training, Validation, and Test Sets:
- Use techniques suitable for graph data.
- Ensure that there is no data leakage.
- Mask Edges for Validation and Testing:
- Remove certain edges from the training graph to be used for evaluation.
Implementation:
from torch_geometric.utils import train_test_split_edges
# Split data
data = train_test_split_edges(data, val_ratio=0.1, test_ratio=0.1)
4. Implementing the GNN Model
Tasks:
- Define the Model Architecture:
- Start with a simple GCNConv layer.
- Set Up the Forward Pass:
- Handle the propagation of node features through the network.
- Implement the Loss Function:
- Use appropriate loss functions for link prediction (e.g., MSELoss).
Implementation:
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class GCNRecommender(torch.nn.Module):
def __init__(self, hidden_channels):
super(GCNRecommender, self).__init__()
self.embedding = torch.nn.Embedding(data.num_nodes, hidden_channels)
self.conv1 = GCNConv(hidden_channels, hidden_channels)
self.conv2 = GCNConv(hidden_channels, hidden_channels)
def encode(self):
x = self.embedding.weight
x = self.conv1(x, data.train_pos_edge_index)
x = F.relu(x)
x = self.conv2(x, data.train_pos_edge_index)
return x
def decode(self, z, edge_index):
# Dot product of node embeddings
return (z[edge_index[0]] * z[edge_index[1]]).sum(dim=1)
def forward(self):
z = self.encode()
pos_edge_index = data.train_pos_edge_index
neg_edge_index = data.train_neg_edge_index
pos_pred = self.decode(z, pos_edge_index)
neg_pred = self.decode(z, neg_edge_index)
return pos_pred, neg_pred
5. Training the Model
Tasks:
- Set Up the Optimizer and Loss Function:
- Use Adam optimizer.
- Define a suitable loss function (e.g., binary cross-entropy loss).
- Implement the Training Loop:
- Iterate over epochs.
- Perform forward pass, compute loss, backward pass, and optimizer step.
- Validate the Model:
- Evaluate performance on the validation set after each epoch.
Implementation:
model = GCNRecommender(hidden_channels=64)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.BCEWithLogitsLoss()
def train():
model.train()
optimizer.zero_grad()
pos_pred, neg_pred = model()
pos_loss = criterion(pos_pred, torch.ones(pos_pred.size(0)))
neg_loss = criterion(neg_pred, torch.zeros(neg_pred.size(0)))
loss = pos_loss + neg_loss
loss.backward()
optimizer.step()
return loss.item()
def test():
model.eval()
z = model.encode()
pos_edge_index = data.test_pos_edge_index
neg_edge_index = data.test_neg_edge_index
pos_pred = model.decode(z, pos_edge_index).sigmoid()
neg_pred = model.decode(z, neg_edge_index).sigmoid()
# Compute evaluation metrics
from sklearn.metrics import roc_auc_score
preds = torch.cat([pos_pred, neg_pred]).detach().numpy()
labels = torch.cat([torch.ones(pos_pred.size(0)), torch.zeros(neg_pred.size(0))]).numpy()
auc = roc_auc_score(labels, preds)
return auc
# Training loop
for epoch in range(1, 201):
loss = train()
if epoch % 10 == 0:
auc = test()
print(f'Epoch {epoch}, Loss: {loss:.4f}, AUC: {auc:.4f}')
6. Hyperparameter Optimization
Tasks:
- Define Hyperparameters to Tune:
- Learning rate, hidden dimensions, number of layers, activation functions, etc.
- Set Up Optuna for Hyperparameter Tuning:
- Create an objective function that trains the model and returns validation performance.
- Run Hyperparameter Optimization Trials:
- Use Optuna to find the best hyperparameters.
Implementation:
import optuna
def objective(trial):
# Suggest hyperparameters
hidden_channels = trial.suggest_categorical('hidden_channels', [32, 64, 128])
learning_rate = trial.suggest_loguniform('learning_rate', 1e-4, 1e-2)
num_layers = trial.suggest_int('num_layers', 1, 3)
# Define the model with suggested hyperparameters
model = GCNRecommender(hidden_channels=hidden_channels, num_layers=num_layers)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Training loop (simplified)
for epoch in range(1, 51):
loss = train()
# Validation
auc = test()
return auc
# Run optimization
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=50)
print('Best hyperparameters:', study.best_params)
7. Model Optimization Techniques
Tasks:
- Implement Early Stopping:
- Stop training when validation loss doesnโt improve.
- Add Regularization Techniques:
- Apply dropout layers.
- Use weight decay in the optimizer.
- Experiment with Different Architectures:
- Try GATConv, GraphSAGEConv, or other PyG layers.
Implementation:
# Modify the model to include dropout
class GCNRecommender(torch.nn.Module):
def __init__(self, hidden_channels, num_layers):
super(GCNRecommender, self).__init__()
self.embedding = torch.nn.Embedding(data.num_nodes, hidden_channels)
self.convs = torch.nn.ModuleList()
self.convs.append(GCNConv(hidden_channels, hidden_channels))
for _ in range(num_layers - 1):
self.convs.append(GCNConv(hidden_channels, hidden_channels))
self.dropout = torch.nn.Dropout(p=0.5)
def encode(self):
x = self.embedding.weight
for conv in self.convs:
x = conv(x, data.train_pos_edge_index)
x = F.relu(x)
x = self.dropout(x)
return x
# Rest of the class remains the same
8. Evaluation and Analysis
Tasks:
- Evaluate the Final Model on Test Set:
- Compute metrics like AUC, Precision@K, Recall@K.
- Analyze Results:
- Interpret the impact of hyperparameter tuning.
- Visualize training and validation loss curves.
Implementation:
# Evaluate on test set
final_auc = test()
print(f'Final Test AUC: {final_auc:.4f}')
# Plot loss curves
plt.plot(training_losses, label='Training Loss')
plt.plot(validation_losses, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
Further Enhancements
To continue improving your project and skills:
- Experiment with Advanced GNN Layers:
- Try Graph Attention Networks (GATConv) or GraphSAGEConv.
- Explore Different Loss Functions:
- Use BPR Loss for ranking-based recommendations.
- Implement Cross-Validation:
- Ensure robustness of the model by validating across multiple data splits.
- Scale Up with Larger Datasets:
- Apply the model to the full MovieLens dataset or other large-scale datasets.
- Deploy the Model:
- Create a simple API using FastAPI or Flask to serve recommendations.